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Introduction

Lasso, an abbreviation for “least absolute shrinkage and selection operator”, was developed

independently in the field of geophysics in 1986 (“Lasso (statistics)”). The technique was

rediscovered, named, and popularized by statistician Robert Tibshirani in 1996, in his paper

“Regression Shrinkage and Selection via the Lasso”. The topic of lasso stood out to our group as an

option for the final project because we have all had experiences applying the technique in our Machine

Learning courses. Lasso is also connected to the section of our Mathematical Statistics course

devoted to linear models. In particular, lasso was developed as a method to overcome certain

complaints that data analysts had with ordinary least squares (OLS) regression models, namely,

prediction accuracy and interpretation. OLS estimates often have low bias but high variance, meaning

that prediction accuracy can sometimes be improved by shrinking or setting to zero some regression

coefficients. Further, OLS models typically contain a large number of predictors; we often would like to

narrow this down to a smaller subset that exhibits the strongest effects (Tibshirani, n.d.).



Lasso falls under the category of penalized or regularized regression methods. Penalized regression

methods keep all the predictor variables in a model but constrain or regularize their regression

coefficients by shrinking them towards zero. In certain cases, if the amount of shrinkage is large

enough, these methods can also serve as variable selection techniques by shrinking some coefficients

to zero (Gunes 2015). This is the case with lasso, which provides both variable selection and

regularization to enhance the prediction accuracy and the interpretability of the resulting statistical

model. Lasso was originally developed for use on linear regression models, but is easily extended to

other statistical models including generalized linear models, generalized estimating equations, and

proportional hazards models (“Lasso (statistics)”). In terms of real world applications, lasso is

commonly used to handle genetic data because the number of potential predictors is often large

relative to the number of observations and there is often little prior knowledge to inform variable

selection (Ranstam and Cook, n.d.).

The sources we explored to learn about lasso in greater depth were “LASSO regression”, a brief

overview of the technique written by J. Ranstam and J.A. Cook, Tibshirani’s paper mentioned above,

and the chapter on lasso in An Introduction to Statistical Learning (ISLR; a statistics textbook

commonly used in Machine Learning courses) by Gareth James et al. 

Ranstam and Cook provide a nice introductory look into lasso, explaining the motivation behind the

method (standard regression models often overfit the data and overestimate the model’s predictive

power), a general description of how lasso works including the role of cross-validation in selecting the

tuning parameter , and some of the limitations of the method.

Tibshirani’s paper proposes a new method for estimation in linear models (“the lasso”), explains the

mathematical derivation of this method, and presents the results of various simulation studies,

comparing the novel method to more established methods of variable selection and regularization,

subset selection and ridge regression. Tibshirani concludes by examining the relative merits of the

three methods in different scenarios, stating that lasso performs best in situations where the

predictors represent a small to medium number of moderate-sized effects.

ISLR provided us with the most comprehensive (and understandable) look into lasso. ISLR explains the

mathematics involved in lasso and provides an in-depth comparison to ridge regression at the

mathematical, geometrical, and functional levels. The textbook concludes that neither method will

universally dominate the other, but that lasso tends to perform better in situations where only a

relatively small number of predictors have substantial coefficients, while ridge regression tends to

perform better when the response variable is a function of many predictors, all with coefficients of

relatively equal size. Finally, ISLR proved extremely useful to us because it included various graphs and

visualizations that illustrate how and why lasso works the way it does.
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In the background section of this report, we will describe the mathematical underpinnings of the lasso,

ridge regression and OLS regression. This will include notation, an explanation of the “penalty term”

used in lasso and ridge regression, and alternate interpretations of how lasso and ridge regression

work. In the main results section, we derive the estimators for OLS and ridge regression and create a

simulation to understand the lasso estimators. We will introduce the set-up for a simulation experiment

using R that demonstrates the merits and drawbacks of using lasso in comparison to OLS regression.

Then, we will compare relevant aspects of the models: regression coefficients, error metrics, and the

bias and variance of model predictions. The discussion section summarizes the main takeaways of our

research.

Background

Overfitting and the Bias-Variance Tradeoff

When models are created, a specific set of data is used to ‘train’ them. From this training data, all the

coefficients and other parameters of the model are determined. Even though a model is trained on a

very specific set of data, it is often applied to other data sets. A model that is ‘overfit’ to the training

data will make accurate predictions for the training data, but will make significantly less accurate

predictions when applied to different data. Overfitting occurs when the model is too sensitive to the

training data and ends up picking up on, and modeling, random quirks of this subset of data. We wish

to avoid overfitting our models to ensure that they are able to make accurate predictions on unknown

data (Gareth James and Tibshirani 2013).

Two important properties of a model and its parameters are bias and variance. Bias is the difference

between the average value that the model predicts and the true average; we want our model to be

pinpointing the correct average, but this is often extremely challenging to do because models are

simplifications of more complicated phenomena. Variance describes how much the estimates of a

model would change if the model was fit using a different dataset. We do not want our model

estimates to fluctuate widely when different data is used; this is an indication that the model is not

capturing trends common to all the data. Overfit models tend to have low bias, but high variance –

they are able to very accurately capture the trends of the training data, but they do not generalize well

to other data. Ideally, we would like to minimize both bias and variance, but it turns out that these two

properties are interrelated. Decreasing bias tends to increase variance and decreasing variance tends

to increase bias. When constructing a model, the goal is balance between bias and variance effectively

to yield an accurate, yet more general model (Gareth James and Tibshirani 2013).

Variable Selection

Whenever we are trying to model data with many possible predictors, we want to determine which

variables are important for predicting the outcome variable. We could include every predictor but often

this yields a complicated and less meaningful model. Variable selection is the ability of some models to



choose which variables are irrelevant to the model and which variables help predict the outcome

variable. Models accomplish variable selection by setting a variable’s coefficient equal to 0. Variable

selection is an extremely useful ability of some models, especially when data context cannot inform

variable selection (Gareth James and Tibshirani 2013).

Ordinary Least Squares Estimation

In ordinary least squares estimation (OLS), we attempt to find a linear model that best fits the data.

Our model is a polynomial  with unknown coefficients

. In the method of least squares, we find the values of these coefficients that

minimize the distance between the true  values and the predicted  values . We define this distance

as a residual: . To get an overall estimate of the prediction error of our model, we compute the

residual for each observation, square the residuals and sum these values (Gareth James and Tibshirani

2013). We can write this as:

We can summarize the least squares method as:

Instead of using standard mathematical notation, we can write linear models and the least squares

method in matrix notation. In matrix notation, a linear model is written as:

.

 is the vector of outcomes,  is the vector of covariates, and  is the matrix of covariates:

The least squares estimation method then becomes:

.
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Problems with Ordinary Least Squares Estimation

OLS models are incredibly useful and form the basis of many other models, but they have problems

that other models can address. OLS models tend to overfit the data, leading to highly variable

predictions when they are applied to new data. They have high variance, especially when making

predictions on the extreme, and thus do not generalize to new contexts. Additionally, they cannot

perform variable selection, making the models challenging to interpret when there are a large number

of predictors. Furthermore, OLS models struggle when predictors are correlated (Gareth James and

Tibshirani 2013). Because of these problems, OLS models are not appropriate in many circumstances,

even when a linear model is a good option.

Lasso

Lasso is an adjustment to the linear regression framework. In a lasso model, the goal is the same as for

OLS model: minimize the RSS. However, we add an additional penalty term, shown in red below, that

limits the values of the coefficients (Gareth James and Tibshirani 2013). Specifically, lasso is defined

as:

When minimizing this quantity as a whole, we are minimizing each component – both the RSS and the

penalty term. Minimizing the penalty term, for a given , has the effect of reducing the values of the

coefficients towards zero (Gareth James and Tibshirani 2013). The constant  allows us to control how

much the coefficients are shrunk towards zero and is thus considered a tuning parameter for lasso

models. Large  values weight the penalty term heavily, so the coefficient values must be very small to

minimize the overall function. Small  values reduce the importance of the penalty term allowing the

coefficients to be larger. In the extreme, if  is infinitely large, the coefficients would all become zero;

if  is zero, the coefficients would be the OLS solution (Gareth James and Tibshirani 2013). We

discuss how to choose  in the next section.
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There is an alternate formulation of lasso that reveals how it is a constrained optimization problem. In

this formulation, we define lasso as:

In this formulation it is clear that the goal remains to minimize the RSS; however, the values of the

coefficients are subjected to an additional constraint. Instead of using the tuning parameter , the

tuning parameter  is used. For large values of , the coefficients are unconstrained and can have large

values. Small values of  impose a tight constraint on the coefficients, forcing them to be small (Gareth

James and Tibshirani 2013). With this formulation of lasso, we can visualize the relationship between

the RSS and the constraint in a two predictors setting. With two predictors, the constraint region is

defined as ; this is a diamond with height . In the graph below, the blue diamond is the

constraint region, the red ellipses represent contour lines of the RSS, and  is the OLS solution (the

absolute minimum of the RSS). In a lasso model, the goal is to find the smallest RSS that is within the

constraint region; in this graph, that is the point where the ellipses intersect the diamond at its top

corner (Gareth James and Tibshirani 2013).
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Selecting the Tuning Parameter

The tuning parameter is often selected using cross validation. With cross validation, the data are

randomly divided into equally sized groups called folds. In one iteration, k-1 folds are reserved for

training the model and 1 fold is reserved for testing the model. The error in the predictions generated

by the model is computed for the test fold. This process is repeated until all the folds are used for

testing. Then, the average test error is computed across all the folds. For selecting , we compute

cross validated error metrics for many different values of  and choose a value of  that leads to low

error (Gareth James and Tibshirani 2013).

𝜆
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Comparison to Ridge Regression

Ridge regression is another technique that modifies the OLS framework by constraining the values of

the coefficients. Ridge regression is defined as:

. We can see that ridge regression is nearly identical to lasso; the only difference is in the penalty term

(shown above in red). Instead of taking the absolute value of the coefficients, ridge regression squares

the coefficients (James et al., 2013). We can consider the constrained optimization formulation of

ridge regression, as we did for lasso:

With two predictors, the constraint region becomes a circle:  (James et al., 2013). We

can construct a very similar graph to the one above:
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By comparing these two graph, we can tell that the only difference between lasso and ridge regression

are their constraint regions. In the next section, we discuss an important implication of this difference.

The Constraint Region and Variable Selection

Lasso’s constraint region allows it to perform variable selection, while ridge regression’s does not. In

the two dimensional example, lasso’s constraint region is a diamond. In a diamond, the points that line

farthest from the center, the points that are most likely to intersect with the RSS contours, are the

corners. These corners lie on the axes; if an RSS contour intersects the constraint region at a corner,



one coefficient will be set to 0. If a coefficient is set to 0, it is selected out of the model. For ridge

regression’s circular constraint region, all of the points on the perimeter lie equidistant to the center –

no point is more likely to intersect an RSS contour than any other point. So, the contours lines do not

intersect at an axis for ridge regression, making it impossible for this technique to perform variable

selection (Gareth James and Tibshirani 2013).

Benefits of Lasso and Ridge Regression

Both lasso and ridge regression are able to make more accurate predictions than OLS in many

contexts. Lasso and ridge regression are often more accurate than OLS because they sacrifice a small

increase in bias for a significant reduction in variance. Both ridge regression and lasso perform well in

a variety of contexts, but the variable selection property of lasso is a significant advantage. Lasso

models have fewer predictors, making them easier to interpret. Ridge regression, because it includes

every variable in the model, outperforms lasso when all of the predictors are related to the outcome.

On the other hand, lasso outperforms ridge regression when only a few of the predictors are related to

the outcome (Gareth James and Tibshirani 2013).

In the main results section, we will derived the variance of OLS and ridge regression estimators and

perform a simulation to examine bias and variance in lasso estimators.

Main Results

Deriving OLS, Ridge Regression and Lasso Estimators

OLS

As described above, the OLS problem can be written as .

We can derive the OLS estimate for :
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RIDGE REGRESSION

In ridge regression, the formula we are trying to minimize is

. We can write this in matrix notation as:

. We can minimize this in much the same way as in OLS:

CONSIDERING A SIMPLE CASE

We can consider a simple case:  is a diagonal matrix with 1’s on the diagonals and 0’s on all the off

diagonals, the number of predictors equals the number of cases, and we force the intercept to go

through the origin. This case allows us simplify our OLS and ridge regression estimators. For OLS, the

solution is  and for ridge regression the solution becomes . Applying this simple case to

find the estimators is helpful particularly for Lasso. Unlike OLS and Ridge Regression, there is no

closed form solution for  for Lasso. To derive any estimators for Lasso, we must consider this simple

case.

LASSO ESTIMATORS IN A SIMPLE CASE

For lasso, we can not find a general closed form solution for , so we will derive the lasso estimates

for  for the simple case described above. We will not use matrix notation in order to easily apply the

assumptions of our simple case.

Remember that we can write the general form of lasso as:

If we apply our simplifying assumptions, we can write:
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With these assumptions, we can find a closed form solution for :

To solve for , we must consider different regions: (1) when , (2) when  and (3) when

.

1. when  or when :

2. when  or when :

3. when :

VISUALIZING THE SIMPLE CASE ESTIMATORS

The graph below shows the simple case coefficient estimates for OLS, ridge regression and lasso as a

function of the data . We can see from that graph, and from the equations derived above, that ridge

regression scales the coefficient estimates by the same factor, , regardless of the value of .

Since it is impossible to divide a non-zero number by any value and get 0, ridge regression cannot set

any coefficient to zero unless it is already 0. However, lasso performs shrinkage in a different way,

allowing some coefficients to be 0. Lasso changes the values of the coefficients by adding or

subtracting , depending on the corresponding . If  is inside the region , the

coefficient is shrunk to 0.
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Deriving Bias and Variance of OLS and Ridge Regression
Estimators

OLS

BIAS

We will assume that  and that . We can show that the least squares estimator

 is an unbiased estimator of :

VARIANCE
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We will assume that ,  and that . We can show that the variance of

the least squares estimator  is :

Ridge Regression

BIAS

We will assume that  and that . We can show that the ridge regression estimator

 is a biased estimator of  (Taboga):

Since , the ridge regression estimator for  will always be biased,

unless . If , the ridge regression estimator is equal to the OLS estimator, which we showed

above is unbiased.

Variance

We will assume that ,  and that . We can show that the variance of

the ridge regression estimator is (Taboga, n.d.):

𝐲 = 𝐗𝜷 + 𝝐 𝐸[𝝐] = 0 𝑉 𝑎𝑟[𝝐] = 𝐈𝜎2

= ( 𝐗 𝐲𝜷  ̂ 𝐗𝑇 )−1𝐗⊤ 𝑉 𝑎𝑟[ ] = ( 𝐗𝜷  ̂ 𝜎2 𝐗𝑇 )−1

𝑉 𝑎𝑟[ ]𝜷  ̂
𝑂𝐿𝑆 = 𝑉 𝑎𝑟[( 𝐗 𝐲]𝐗𝑇 )−1𝐗⊤

= ( 𝐗 𝑉 𝑎𝑟[𝐲](( 𝐗 ,  since 𝑉 𝑎𝑟(𝐀𝐱) = 𝐀𝑉 𝑎𝑟(𝐱)𝐗𝑇 )−1𝐗⊤ 𝐗𝑇 )−1𝐗⊤)⊤ 𝐀⊤

= ( 𝐗 𝑉 𝑎𝑟[𝐲]𝐗( 𝐗 ,  since (𝐀𝐁 =  and ( = (𝐗𝑇 )−1𝐗⊤ 𝐗𝑇 )−1 )⊤ 𝐁⊤𝐀⊤ 𝐀−1 )⊤ 𝐀⊤)−1

= ( 𝐗 𝑉 𝑎𝑟[𝐗𝜷 + 𝝐]𝐗( 𝐗 ,  by assumption𝐗𝑇 )−1𝐗⊤ 𝐗𝑇 )−1

= ( 𝐗 𝑉 𝑎𝑟[𝝐]𝐗( 𝐗 ,  since 𝐗 and 𝜷 are fixed𝐗𝑇 )−1𝐗⊤ 𝐗𝑇 )−1

= ( 𝐗 ( 𝐈)𝐗( 𝐗 ,  by assumption𝐗𝑇 )−1𝐗⊤ 𝜎2 𝐗𝑇 )−1

= ( 𝐗 ( 𝐗)( 𝐗𝜎2 𝐗𝑇 )−1 𝐗⊤ 𝐗𝑇 )−1

= ( 𝐗𝜎2 𝐗𝑇 )−1

𝐲 = 𝐗𝜷 + 𝝐 𝐸[𝝐] = 0
𝜷 = ( 𝐗 + 𝜆𝐈 𝐲𝐗⊤ )−1𝐗⊤ 𝜷

𝐸[ ]𝜷  ̂
𝑟𝑖𝑑𝑔𝑒 = 𝐸[( 𝐗 + 𝜆𝐈 𝐲]𝐗⊤ )−1𝐗⊤

= 𝐸[( 𝐗 + 𝜆𝐈 (𝐗𝜷 + 𝝐)],  by assumption𝐗⊤ )−1𝐗⊤

= 𝐸[( 𝐗 + 𝜆𝐈 (𝐗𝜷) + ( 𝐗 + 𝜆𝐈 (𝝐)]𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1𝐗⊤

= 𝐸[( 𝐗 + 𝜆𝐈 (𝐗𝜷)] + 𝐸[( 𝐗 + 𝜆𝐈 (𝝐)]𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1𝐗⊤

= ( 𝐗 + 𝜆𝐈 (𝐗𝜷) + ( 𝐗 + 𝜆𝐈 𝐸[(𝝐)],  since 𝐗 and 𝜷 are fixed𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1𝐗⊤

= ( 𝐗 + 𝜆𝐈 (𝐗𝜷) + ( 𝐗 + 𝜆𝐈 (0),  by assumption 𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1𝐗⊤

= ( 𝐗 + 𝜆𝐈 𝐗𝜷𝐗⊤ )−1𝐗⊤

𝐸[ ] = ( 𝐗 + 𝜆𝐈 𝐗𝜷𝜷  ̂
𝑟𝑖𝑑𝑔𝑒 𝐗⊤ )−1𝐗⊤ 𝜷

𝜆 = 0 𝜆 = 0

𝐲 = 𝐗𝜷 + 𝝐 𝐸[𝝐] = 0 𝑉 𝑎𝑟[𝝐] = 𝐈𝜎2

( 𝐗 + 𝜆𝐈 𝐗( 𝐗 + 𝜆𝐈𝜎2 𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1



We can show that the variance of the ridge regression estimator is equal to the variance of the OLS

estimator when :

Importantly, the variance of the ridge regression estimator is always smaller than the variance of the

OLS estimator when . To see that this is true, we can consider the case when  is a 1 by 1 matrix

with value 1 ([1]) and :

From this simple case, we can see that  is smaller than . This holds true for all

cases when , but the proof of that is beyond the scope of this project (Taboga, n.d.).

Lasso

Lasso, unlike OLS and ridge regression, does not have closed form solutions for the bias and variance

of its estimator. To examine the bias and variance of lasso estimators, we constructed a simulation and

we discuss the results of the simulation in the next section.

𝑉 𝑎𝑟[ ]𝜷  ̂
𝑟𝑖𝑑𝑔𝑒 = 𝑉 𝑎𝑟(( 𝐗 + 𝜆𝐈 𝐲)𝐗⊤ )−1𝐗⊤

= ( 𝐗 + 𝜆𝐈 𝑉 𝑎𝑟(𝐲)(( 𝐗 + 𝜆𝐈 ,  since 𝑉 𝑎𝑟(𝐀𝐱) = 𝐀𝑉 𝑎𝑟(𝐱)𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1𝐗⊤)⊤ 𝐀⊤

= ( 𝐗 + 𝜆𝐈 𝑉 𝑎𝑟(𝐗𝜷 + 𝝐)(( 𝐗 + 𝜆𝐈 ,  by assumption 𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1𝐗⊤)⊤

= ( 𝐗 + 𝜆𝐈 (𝑉 𝑎𝑟(𝐗𝜷) + 𝑉 𝑎𝑟(𝝐))(( 𝐗 + 𝜆𝐈𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1𝐗⊤)⊤

= ( 𝐗 + 𝜆𝐈 𝑉 𝑎𝑟(𝝐)(( 𝐗 + 𝜆𝐈 ,  since 𝐗 and 𝜷 are fixed𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1𝐗⊤)⊤

= ( 𝐗 + 𝜆𝐈 ( 𝐈)(( 𝐗 + 𝜆𝐈 ,  by assumption 𝐗⊤ )−1𝐗⊤ 𝜎2 𝐗⊤ )−1𝐗⊤)⊤

= ( 𝐗 + 𝜆𝐈 )(( 𝐗 + 𝜆𝐈𝜎2 𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1𝐗⊤)⊤

= ( 𝐗 + 𝜆𝐈 𝐗(( 𝐗 + 𝜆𝐈𝜎2 𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1 )⊤

= ( 𝐗 + 𝜆𝐈 𝐗( 𝐗 + 𝜆𝐈𝜎2 𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1

𝜆 = 0

𝑉 𝑎𝑟[ ] when 𝜆 = 0 :𝜷  ̂
𝑟𝑖𝑑𝑔𝑒

= ( 𝐗 + 0𝐈 𝐗( 𝐗 + 0𝐈𝜎2 𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1

= ( 𝐗 𝐗( 𝐗𝜎2 𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1

= ( 𝐗 = 𝑉 𝑎𝑟[ ]𝜎2 𝐗⊤ )−1 𝜷  ̂
𝑂𝐿𝑆

𝜆 > 0 𝐗
𝜆 = 1

𝑉 𝑎𝑟[ ]𝜷  ̂
𝑟𝑖𝑑𝑔𝑒 = ( 𝐗 + 𝜆𝐈 𝐗( 𝐗 + 𝜆𝐈𝜎2 𝐗⊤ )−1𝐗⊤ 𝐗⊤ )−1

= (1 ∗ 1 + 1 1 ∗ 1(1 ∗ 1 + 1𝜎2 )−1 )−1

= (2 (2𝜎2 )−1 )−1

= 𝜎2

4

𝑉 𝑎𝑟[ ]𝜷  ̂
𝑂𝐿𝑆 = ( 𝐗𝜎2 𝐗𝑇 )−1

= (1 ∗ 1𝜎2 )−1

= =𝜎2

1
𝜎2

𝑉 𝑎𝑟[ ]𝜷  ̂
𝑟𝑖𝑑𝑔𝑒 𝑉 𝑎𝑟[ ]𝜷  ̂

𝑂𝐿𝑆
𝜆 > 0



Simulation

For the simulation, we generated a dataset of 9 variables, 3 of which are highly correlated with one

another. The 9th variable is the  variable that we will be trying to predict. This outcome variable is a

linear combination of 2 correlated variables, 3 independent variables, and some noninformative

variables. We also added some measurement error to . The true form of  is as follows:

. The rnorm adds measurement

noise to model. First, we fit an OLS model to the data, and then we fit a lasso regression model. We

compare the coefficient estimates for both the OLS model and the lasso model to the true coefficient

estimates. We also examine the bias and variance of the estimates from both models.

COEFFICIENT ESTIMATES

# A tibble: 9 × 5
  term        estimate std.error statistic  p.value
  <chr>          <dbl>     <dbl>     <dbl>    <dbl>
1 (Intercept)  -0.673    0.378      -1.78  7.46e- 2
2 V1            0.0184   0.0476      0.386 7.00e- 1
3 V2            2.13     0.108      19.8   7.76e-86
4 V3            1.86     0.0905     20.5   1.02e-91
5 V4            5.06     0.0301    168.    0       
6 V5            5.01     0.00845   593.    0       
7 V6            4.99     0.00597   837.    0       
8 V7            3.01     0.0204    148.    0       
9 V8           -0.0122   0.0302     -0.405 6.86e- 1

The table above provides the coefficient estimates and their standard errors for the linear model. For

the correlated variables, ( ), the standard errors are higher than for the noncorrelated

variables because the linear model struggles to deal with multicollinearity. The linear model can

distinguish between variables with true non-zero coefficients and noninformative variables, but it did

not set the coefficients of the noninformative variables exactly to 0.

# A tibble: 1 × 2
  penalty .config               
    <dbl> <chr>                 
1     0.1 Preprocessor1_Model001

# A tibble: 9 × 3
  term        estimate penalty
  <chr>          <dbl>   <dbl>
1 (Intercept)     2.72   0.351
2 V1              0      0.351
3 V2              2.11   0.351
4 V3              1.74   0.351
5 V4              4.88   0.351
6 V5              4.96   0.351
7 V6              4.96   0.351

𝑦

𝑦 𝑦
𝑦 = 0 + 2 + 2 + 5 + 5 + 5 + 3 + 0 + rnorm(0, 6)𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8

, ,𝑣1 𝑣2 𝑣3



8 V7              2.89   0.351
9 V8              0      0.351

The table above displays the coefficient estimates generated by the lasso model. Unlike the OLS

model, lasso was able to set the coefficient’s of the noninformative variables exactly to 0.

MODEL ACCURACY

# A tibble: 2 × 6
  .metric .estimator  mean     n std_err .config             
  <chr>   <chr>      <dbl> <int>   <dbl> <chr>               
1 mae     standard    4.81    10  0.0352 Preprocessor1_Model1
2 rmse    standard    6.02    10  0.0451 Preprocessor1_Model1

# A tibble: 2 × 6
  .metric .estimator  mean     n std_err .config             
  <chr>   <chr>      <dbl> <int>   <dbl> <chr>               
1 mae     standard    4.85    10  0.0342 Preprocessor1_Model1
2 rmse    standard    6.08    10  0.0457 Preprocessor1_Model1

The two tables above show the overall accuracy of the two models according to two different error

metrics MAE and RMSE. Comparing the models’ accuracy reveals that the lasso model is slightly less

accurate than the OLS model; however, this difference is very small. Although the lasso model is less

accurate, it’s ability to set coefficients to 0 and thus perform variable selection is a significant

advantage over the OLS model. In the next section, we will examine how the lasso coefficient

estimates change as we alter the value of the tuning parameter .

CHANGING THE TUNING PARAMETER

𝜆



This graph depicts what happens to the coefficient estimates as  increases. As  reaches 50, all of

the coefficients are set to 0. However, the coefficients are not set to 0 at the same time. Both the

coefficients of  and , the noninformative variables, were set to 0 with a very small . The most

important variable (because of its large variance), , is set to 0 only for very large values of .

THE BIAS AND VARIANCE OF THE COEFFICIENT ESTIMATES

To get estimates for the bias and variance of the coefficient estimate for both models, we sampled 100

different datasets of coefficient values from the larger dataset generated in the beginning.

              Estimate Std. Error    t value     Pr(>|t|)
(Intercept) -4.4961576 4.06832662 -1.1051614 2.720031e-01
V1           0.1536838 0.48783342  0.3150333 7.534576e-01
V2           1.9078509 1.26265671  1.5109814 1.342580e-01
V3           2.0410304 0.98715975  2.0675787 4.151895e-02
V4           5.1588137 0.34129732 15.1153069 1.502605e-26
V5           4.9461718 0.07327357 67.5028130 1.595056e-79
V6           5.0132068 0.05598747 89.5415868 1.594911e-90
V7           3.2342516 0.19213361 16.8333459 1.076086e-29
V8           0.3539362 0.31637034  1.1187402 2.661954e-01

             (Intercept)        V1       V2      V3       V4       V5
my_estimates   -4.496158 0.1536838 1.907851 2.04103 5.158814 4.946172
                   V6       V7        V8
my_estimates 5.013207 3.234252 0.3539362

𝜆 𝜆

𝑣1 𝑣8 𝜆
𝑣6 𝜆



This graph visualizes how frequently  had a specific coefficient value for each model. By comparing

the most commonly occuring coefficient value for lasso and for OLS to the true value, we can tell that

the lasso coefficient is more biased than the OLS coefficient. However, the variance of the lasso

coefficient is far smaller than the variance for OLS coefficient.

This graph depicts the bias and variance for a noninformative variable for both models. In this graph,

the reduction in variance in the lasso model is even more extreme than in the graph for the informative

variable. While both models seem to be relatively unbiased, the lasso model’s small variance will yield

more accurate predictions overall.

           Bias_lm Variance_lm  Bias_lasso Variance_lasso
V1_lm  0.066834354 0.253835703  0.01883497   0.0026286929
V2_lm  0.055503772 1.288218122  0.09150388   0.0756530955
V3_lm -0.121160270 0.902640797 -0.27157368   0.0691781158
V4_lm  0.059540947 0.091731644 -0.11984989   0.0077073755
V5_lm  0.013835419 0.007307476 -0.04399253   0.0006592307
V6_lm -0.010163536 0.003733533 -0.04331724   0.0002988397
V7_lm -0.002287099 0.042577869 -0.11252372   0.0043010517
V8_lm  0.006798568 0.112422037  0.00087243   0.0002184819
      Actual Value
V1_lm            0
V2_lm            2
V3_lm            2
V4_lm            5
V5_lm            5
V6_lm            5
V7_lm            3
V8_lm            0

𝑣4



This table shows the average bias and variance for each coefficient for both the OLS and lasso model.

Overall, the variances for the coefficients in the lasso model are much smaller than the variances in the

OLS model, but the biases are larger for the lasso model coefficients.

Discusion

To conclude our report, we will briefly discuss the relevance, limitations, and applications of lasso

regression. Lasso is relevant because of its ability to address the shortcomings of OLS regression

models. Specifically, lasso is able to account for multicollinearity of predictor variables and correct for

overfitting in situations with a large number of predictors. Furthermore, unlike some penalized

regression methods (e.g., ridge regression) lasso has the ability to perform variable selection, by

shrinking the regression coefficients of certain predictors to zero, thus improving model

interpretability.

In the main results section, we derived the estimators for OLS and ridge regression and the bias and

variance of these estimators. Additionally, we included relevant outputs and visualizations from a

simulation experiment in which we compared the performance of lasso and OLS in modeling a

fictitious dataset. There were two main takeaways from our simulation experiment. First, lasso, unlike

OLS, performs variable selection by shrinking the coefficients of uninformative predictors to zero. In

the coefficient output tables, we saw that lasso set the coefficients of uninformative predictors (which

we had given a true value of zero in the data creation stage) to zero, while OLS gave these variables

very small nonzero coefficient values. Thus, lasso helps to simplify the model (and prevent overfitting)

by eliminating predictors with negligible effects on the output. The second main takeaway was that

lasso, in comparison to OLS, provides an advantage in terms of the bias-variance tradeoff. The density

plots from our simulations show how lasso returns predictor coefficient estimates that are slightly

more biased, but much less variable.

In spite of the results of our simulation, it is important to recognize that lasso is not a cure-all for the

issues of overfitting and multicollinearity and does not remove the need to validate a model on a test

dataset. The primary limitation of lasso is that it trades off potential bias in estimating individual

parameters for a better expected overall prediction. In other words, under the lasso approach,

regression coefficients may not be reliably interpreted in terms of independent risk factors, as the

model’s focus is on the best combined prediction, not the accuracy of the estimation and

interpretation of the contribution of individual variables. Also, lasso may underperform in comparison

to ridge regression in situations where the predictor variables account for a large number of small

effects on the response variable.



In the real world, lasso is commonly used to handle genetic data because the number of potential

predictors is often large relative to the number of observations and there is often little prior knowledge

to inform variable selection (Ranstam & Cook 1). Lasso also has applications in economics and finance,

helping to predict events like corporate bankruptcy. Besides these specific fields of application, lasso

is also implementable in any situation where multiple linear regression would apply. Multiple linear

regression has wide-ranging applications, but to provide a specific example, it is often used in medical

research. Researchers may want to test whether there is a relationship between various categorical

variables (e.g., drug treatment group, patient sex), quantitative variables (e.g., patient age, cardiac

output), and a quantitative outcome (e.g., blood pressure). Multiple linear regression allows

researchers to test for this relationship, as well as quantify its direction and strength. Lasso regression

may come into play in scenarios where multicollinearity exists (e.g., patient height and weight), there

are a large number of predictors (and it is likely some are uninformative), and when it is important to

have less-variable predictions for model coefficients.

Link to Simulation Download

Here
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